1887

Abstract

The field of microbial taxonomy is dynamic, aiming to provide a stable and contemporary classification system for prokaryotes. Traditionally, reliance on phenotypic characteristics limited the comprehensive understanding of microbial diversity and evolution. The introduction of molecular techniques, particularly DNA sequencing and genomics, has transformed our perception of prokaryotic diversity. In the past two decades, advancements in genome sequencing have transitioned from traditional methods to a genome-based taxonomic framework, not only to define species, but also higher taxonomic ranks. As technology and databases rapidly expand, maintaining updated standards is crucial. This work seeks to revise the 2018 guidelines for applying genome sequencing data in microbial taxonomy, adapting minimal standards and recommendations to reflect technological progress during this period.

Funding
This study was supported by the:
  • Ministerio de Ciencia e Innovación (Award TED2021-131105B-I00)
    • Principle Award Recipient: MarthaEstela Trujillo
  • Ministerio de Ciencia e Innovación (Award PID2021-124068NB-I00)
    • Principle Award Recipient: MarthaEstela Trujillo
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006300
2024-03-21
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/74/3/ijsem006300.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.006300&mimeType=html&fmt=ahah

References

  1. Thompson CC, Amaral GR, Campeão M, Edwards RA, Polz MF et al. Microbial taxonomy in the post-genomic era: rebuilding from scratch?. Arch Microbiol 2015; 197:359–370 [View Article] [PubMed]
    [Google Scholar]
  2. Hugenholtz P, Chuvochina M, Oren A, Parks DH, Soo RM. Prokaryotic taxonomy and nomenclature in the age of big sequence data. ISME J 2021; 15:1879–1892 [View Article] [PubMed]
    [Google Scholar]
  3. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  4. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol 2014; 64:316–324 [View Article]
    [Google Scholar]
  5. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 2005; 102:2567–2572 [View Article] [PubMed]
    [Google Scholar]
  6. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  7. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  8. Riesco R, Carro L, Román-Ponce B, Prieto C, Blom J et al. Defining the species Micromonospora saelicesensis and Micromonospora noduli under the framework of genomics. Front Microbiol 2018; 9:1360 [View Article]
    [Google Scholar]
  9. Palmer M, Steenkamp ET, Blom J, Hedlund BP, Venter SN. All ANIs are not created equal: implications for prokaryotic species boundaries and integration of ANIs into polyphasic taxonomy. Int J Syst Evol Microbiol 2020; 70:2937–2948 [View Article] [PubMed]
    [Google Scholar]
  10. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res 2015; 43:6761–6771 [View Article] [PubMed]
    [Google Scholar]
  11. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  12. Gosselin S, Fullmer MS, Feng Y, Gogarten JP. Improving phylogenies based on average nucleotide identity, incorporating saturation correction and nonparametric bootstrap support. Syst Biol 2022; 71:396–409 [View Article] [PubMed]
    [Google Scholar]
  13. Barco RA, Garrity GM, Scott JJ, Amend JP, Nealson KH et al. A genus definition for bacteria and Archaea based on a standard genome relatedness index. MBio 2020; 11:1–20 [View Article]
    [Google Scholar]
  14. Wu L, Ma J. The Global Catalogue of Microorganisms (GCM) 10K type strain sequencing project: providing services to taxonomists for standard genome sequencing and annotation. Int J Syst Evol Microbiol 2019; 69:895–898 [View Article] [PubMed]
    [Google Scholar]
  15. Avise JC, Johns GC. Proposal for a standardized temporal scheme of biological classification for extant species. Proc Natl Acad Sci USA 1999; 96:7358–7363 [View Article]
    [Google Scholar]
  16. Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB et al. A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 2020; 70:2782–2858 [View Article]
    [Google Scholar]
  17. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article] [PubMed]
    [Google Scholar]
  18. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  19. Luo C, Rodriguez-R LM, Konstantinidis KT. MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 2014; 42:e73 [View Article]
    [Google Scholar]
  20. Medlar AJ, Törönen P, Holm L. AAI-profiler: fast proteome-wide exploratory analysis reveals taxonomic identity, misclassification and contamination. Nucleic Acids Res 2018; 46:W479–W485 [View Article] [PubMed]
    [Google Scholar]
  21. Park M-J, Kim YJ, Park M, Yu J, Namirimu T et al. Establishment of genome based criteria for classification of the family Desulfovibrionaceae and proposal of two novel genera, Alkalidesulfovibrio gen. nov. and Salidesulfovibrio gen. nov. Front Microbiol 2022; 13:738205 [View Article] [PubMed]
    [Google Scholar]
  22. Sangal V, Goodfellow M, Blom J, Tan GYA, Klenk H-P et al. Revisiting the taxonomic status of the biomedically and industrially important genus Amycolatopsis, using a phylogenomic approach. Front Microbiol 2018; 9:1–9 [View Article]
    [Google Scholar]
  23. Xu Z, Masuda Y, Wang X, Ushijima N, Shiratori Y et al. Genome-based taxonomic rearrangement of the order Geobacterales including the description of Geomonas azotofigens sp. nov. and Geomonas diazotrophica sp. nov. Front Microbiol 2021; 12: [View Article]
    [Google Scholar]
  24. Nicholson AC, Gulvik CA, Whitney AM, Humrighouse BW, Bell ME et al. Division of the genus Chryseobacterium: observation of discontinuities in amino acid identity values, a possible consequence of major extinction events, guides transfer of nine species to the genus Epilithonimonas, eleven species to the genus Kaistella, and three species to the genus Halpernia gen. nov., with description of Kaistella daneshvariae sp. nov. and Epilithonimonas vandammei sp. nov. derived from clinical specimens. Int J Syst Evol Microbiol 2020; 70:4432–4450 [View Article] [PubMed]
    [Google Scholar]
  25. Wirth JS, Whitman WB. Phylogenomic analyses of a clade within the roseobacter group suggest taxonomic reassignments of species of the genera Aestuariivita, Citreicella, Loktanella, Nautella, Pelagibaca, Ruegeria, Thalassobius, Thiobacimonas and Tropicibacter, and the proposal of six novel genera. Int J Syst Evol Microbiol 2018; 68:2393–2411 [View Article] [PubMed]
    [Google Scholar]
  26. Val-Calvo J, Vázquez-Boland JA. Mycobacteriales taxonomy using network analysis-aided, context-uniform phylogenomic approach for non-subjective genus demarcation. mBio 2023; 14:e0220723 [View Article] [PubMed]
    [Google Scholar]
  27. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe Magazine 2014; 9:111–118 [View Article]
    [Google Scholar]
  28. Kim D, Park S, Chun J. Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J Microbiol 2021; 59:476–480 [View Article] [PubMed]
    [Google Scholar]
  29. Eisen JA, Fraser CM. Phylogenomics: intersection of evolution and genomics. Science 2003; 300:1706–1707 [View Article]
    [Google Scholar]
  30. Zhu Q, Mai U, Pfeiffer W, Janssen S, Asnicar F et al. Phylogenomics of 10,575 genomes reveals evolutionary proximity between domains Bacteria and Archaea. Nat Commun 2019; 10:5477 [View Article]
    [Google Scholar]
  31. Martens M, Dawyndt P, Coopman R, Gillis M, De Vos P et al. Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int J Syst Evol Microbiol 2008; 58:200–214 [View Article] [PubMed]
    [Google Scholar]
  32. Glaeser SP, Kämpfer P. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol 2015; 38:237–245 [View Article] [PubMed]
    [Google Scholar]
  33. Kapli P, Yang Z, Telford MJ. Phylogenetic tree building in the genomic age. Nat Rev Genet 2020; 21:428–444 [View Article] [PubMed]
    [Google Scholar]
  34. Shakya M, Ahmed SA, Davenport KW, Flynn MC, Lo C-C et al. Standardized phylogenetic and molecular evolutionary analysis applied to species across the microbial tree of life. Sci Rep 2020; 10:1723 [View Article] [PubMed]
    [Google Scholar]
  35. Na S-I, Kim YO, Yoon S-H, Ha S, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article]
    [Google Scholar]
  36. Na S-I, Bailey MJ, Chalita M, Cho JH, Chun J. UACG: up-to-date Archaeal core genes and software for phylogenomic tree reconstruction. J Microbiol 2023; 61:683–692 [View Article]
    [Google Scholar]
  37. Kim D, Gilchrist CLM, Chun J, Steinegger M. UFCG: database of universal fungal core genes and pipeline for genome-wide phylogenetic analysis of fungi. Nucleic Acids Res 2023; 51:D777–D784 [View Article] [PubMed]
    [Google Scholar]
  38. Kim J, Na S-I, Kim D, Chun J. UBCG2: up-to-date bacterial core genes and pipeline for phylogenomic analysis. J Microbiol 2021; 59:609–615 [View Article]
    [Google Scholar]
  39. Meier‐Kolthoff JP, Auch AF, Klenk H, Göker M. Highly parallelized inference of large genome‐based phylogenies. Concurr Comput 2014; 26:1715–1729 [View Article]
    [Google Scholar]
  40. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  41. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  42. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol 2018; 9:2007 [View Article] [PubMed]
    [Google Scholar]
  43. Montero-Calasanz M del C, Meier-Kolthoff JP, Zhang D-F, Yaramis A, Rohde M et al. Genome-scale data call for a taxonomic rearrangement of Geodermatophilaceae. Front Microbiol 2017; 8:2501 [View Article]
    [Google Scholar]
  44. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold L-M et al. Analysis of 1,000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front Microbiol 2020; 11:468 [View Article] [PubMed]
    [Google Scholar]
  45. Lees JA, Kendall M, Parkhill J, Colijn C, Bentley SD et al. Evaluation of phylogenetic reconstruction methods using bacterial whole genomes: a simulation based study. Wellcome Open Res 2018; 3:33 [View Article]
    [Google Scholar]
  46. Delsuc F, Brinkmann H, Philippe H. Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 2005; 6:361–375 [View Article] [PubMed]
    [Google Scholar]
  47. Morales-Briones DF, Kadereit G, Tefarikis DT, Moore MJ, Smith SA et al. Disentangling sources of gene tree discordance in phylogenomic data sets: testing ancient hybridizations in Amaranthaceae s.l. Syst Biol 2021; 70:219–235 [View Article] [PubMed]
    [Google Scholar]
  48. Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics 2022; 38:5315–5316 [View Article] [PubMed]
    [Google Scholar]
  49. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  50. Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res 2022; 50:D785–D794 [View Article] [PubMed]
    [Google Scholar]
  51. Pervez MT, Hasnain MJU, Abbas SH, Moustafa MF, Aslam N et al. A comprehensive review of performance of next-generation sequencing platforms. Biomed Res Int 2022; 2022:3457806 [View Article] [PubMed]
    [Google Scholar]
  52. Rang FJ, Kloosterman WP, de Ridder J. From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy. Genome Biol 2018; 19:90 [View Article] [PubMed]
    [Google Scholar]
  53. Ewing B, Hillier L, Wendl MC, Green P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 1998; 8:175–185 [View Article] [PubMed]
    [Google Scholar]
  54. Segerman B. The most frequently used sequencing technologies and assembly methods in different time segments of the bacterial surveillance and RefSeq genome databases. Front Cell Infect Microbiol 2020; 10:527102 [View Article] [PubMed]
    [Google Scholar]
  55. Chen L-X, Anantharaman K, Shaiber A, Eren AM, Banfield JF. Accurate and complete genomes from metagenomes. Genome Res 2020; 30:315–333 [View Article] [PubMed]
    [Google Scholar]
  56. Peng Y, Leung HCM, Yiu SM, Chin FYL. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012; 28:1420–1428 [View Article] [PubMed]
    [Google Scholar]
  57. Park MS, Sa H, Kang I, Cho JC. Flavihumibacter fluminis sp. nov. and Flavihumibacter rivuli sp. nov., isolated from a freshwater stream. J Microbiol 2022; 60:806–813 [View Article] [PubMed]
    [Google Scholar]
  58. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article] [PubMed]
    [Google Scholar]
  59. Goussarov G, Mysara M, Vandamme P, Van Houdt R. Introduction to the principles and methods underlying the recovery of metagenome-assembled genomes from metagenomic data. Microbiologyopen 2022; 11:e1298 [View Article] [PubMed]
    [Google Scholar]
  60. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  61. Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of Eukaryotic, Prokaryotic, and viral genomes. Mol Biol Evol 2021; 38:4647–4654 [View Article] [PubMed]
    [Google Scholar]
  62. Chklovski A, Parks DH, Woodcroft BJ, Tyson GW. CheckM2: a rapid, scalable and accurate tool for assessing microbial genome quality using machine learning. Nat Methods 2023; 20:1203–1212 [View Article] [PubMed]
    [Google Scholar]
  63. Chain PSG, Grafham DV, Fulton RS, FitzGerald MG, Hostetler J et al. Genome project standards in a new era of sequencing. Science 2009; 326:236–237 [View Article]
    [Google Scholar]
  64. Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol 2017; 35:725–731 [View Article] [PubMed]
    [Google Scholar]
  65. Reimer LC, Sardà Carbasse J, Koblitz J, Ebeling C, Podstawka A et al. BacDive in 2022: the knowledge base for standardized bacterial and archaeal data. Nucleic Acids Res 2022; 50:D741–D746 [View Article] [PubMed]
    [Google Scholar]
  66. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  67. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  68. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  69. Rodriguez-R LM, Gunturu S, Harvey WT, Rosselló-Mora R, Tiedje JM et al. The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic Acids Res 2018; 46:W282–W288 [View Article] [PubMed]
    [Google Scholar]
  70. Shi W, Sun Q, Fan G, Hideaki S, Moriya O et al. gcType: a high-quality type strain genome database for microbial phylogenetic and functional research. Nucleic Acids Res 2021; 49:D694–D705 [View Article] [PubMed]
    [Google Scholar]
  71. Lin H. SilentGene/Bio-py: Bio-py v1.0; 2021
  72. Asnicar F, Thomas AM, Beghini F, Mengoni C, Manara S et al. Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0. Nat Commun 2020; 11:2500 [View Article] [PubMed]
    [Google Scholar]
  73. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol Biol Evol 2020; 37:1530–1534 [View Article] [PubMed]
    [Google Scholar]
  74. Bushnell B. BBMap: a fast, accurate, splice-aware aligner; 2014
  75. Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL et al. KBase: the United States department of energy systems biology knowledgebase. Nat Biotechnol 2018; 36:566–569 [View Article] [PubMed]
    [Google Scholar]
  76. Sayers EW, Bolton EE, Brister JR, Canese K, Chan J et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2022; 50:D20–D26 [View Article] [PubMed]
    [Google Scholar]
  77. Leinonen R, Akhtar R, Birney E, Bower L, Cerdeno-Tárraga A et al. The European Nucleotide Archive. Nucleic Acids Res 2011; 39:D28–31 [View Article] [PubMed]
    [Google Scholar]
  78. Fukuda A, Kodama Y, Mashima J, Fujisawa T, Ogasawara O. DDBJ update: streamlining submission and access of human data. Nucleic Acids Res 2021; 49:D71–D75 [View Article] [PubMed]
    [Google Scholar]
  79. Nordberg H, Cantor M, Dusheyko S, Hua S, Poliakov A et al. The genome portal of the department of energy joint genome institute: 2014 updates. Nucleic Acids Res 2014; 42:D26–31 [View Article] [PubMed]
    [Google Scholar]
  80. Yates AD, Allen J, Amode RM, Azov AG, Barba M et al. Ensembl genomes 2022: an expanding genome resource for non-vertebrates. Nucleic Acids Res 2022; 50:D996–D1003 [View Article] [PubMed]
    [Google Scholar]
  81. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006300
Loading
/content/journal/ijsem/10.1099/ijsem.0.006300
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error