1887

Abstract

The human cytomegalovirus (HCMV) pUS2 glycoprotein exploits the host’s endoplasmic reticulum (ER)-associated degradation (ERAD) pathway to degrade major histocompatibility complex class I (MHC-I) and prevent antigen presentation. Beyond MHC-I, pUS2 has been shown to target a range of cellular proteins for degradation, preventing their cell surface expression. Here we have identified a novel pUS2 target, ER-resident protein lectin mannose binding 2 like (LMAN2L). pUS2 expression was both necessary and sufficient for the downregulation of LMAN2L, which was dependent on the cellular E3 ligase TRC8. Given the hypothesized role of LMAN2L in the trafficking of glycoproteins, we employed proteomic plasma membrane profiling to measure LMAN2L-dependent changes at the cell surface. A known pUS2 target, integrin alpha-6 (ITGA6), was downregulated from the surface of LMAN2L-deficient cells, but not other integrins. Overall, these results suggest a novel strategy of pUS2-mediated protein degradation whereby pUS2 targets LMAN2L to impair trafficking of ITGA6. Given that pUS2 can directly target other integrins, we propose that this single viral protein may exhibit both direct and indirect mechanisms to downregulate key cell surface molecules.

Funding
This study was supported by the:
  • NIHR Cambridge Biomedical Research Centre (Award NIHR203312)
    • Principle Award Recipient: MichaelP. Weekes
  • Wellcome Trust (Award 226615/Z/22/Z)
    • Principle Award Recipient: RichardJ. Stanton
  • Medical Research Council (Award MR/S00971X/1)
    • Principle Award Recipient: RichardJ. Stanton
  • Wellcome Trust (Award 220015/Z/19/Z)
    • Principle Award Recipient: LeahM. Hunter
  • Wellcome Trust (Award 108070/Z/15/Z)
    • Principle Award Recipient: MichaelP. Weekes
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001980
2024-04-30
2024-05-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/105/4/jgv001980.html?itemId=/content/journal/jgv/10.1099/jgv.0.001980&mimeType=html&fmt=ahah

References

  1. Cannon MJ, Schmid DS, Hyde TB. Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev Med Virol 2010; 20:202–213 [View Article] [PubMed]
    [Google Scholar]
  2. Emery VC, Lazzarotto T. Cytomegalovirus in pregnancy and the neonate. F1000Res 2017; 6:138 [View Article] [PubMed]
    [Google Scholar]
  3. Zuhair M, Smit GSA, Wallis G, Jabbar F, Smith C et al. Estimation of the worldwide seroprevalence of cytomegalovirus: a systematic review and meta-analysis. Rev Med Virol 2019; 29:e2034 [View Article] [PubMed]
    [Google Scholar]
  4. Griffiths P, Baraniak I, Reeves M. The pathogenesis of human cytomegalovirus. J Pathol 2015; 235:288–297 [View Article] [PubMed]
    [Google Scholar]
  5. Manicklal S, Emery VC, Lazzarotto T, Boppana SB, Gupta RK. The “silent” global burden of congenital cytomegalovirus. Clin Microbiol Rev 2013; 26:86–102 [View Article] [PubMed]
    [Google Scholar]
  6. Mocarski ES. Human cytomegalovirus (Herpesviridae). In Bamford DH, Zuckerman M. eds Encyclopedia of Virology, 4th. Oxford: Academic Press; 2021 pp 441–459 https://doi.org/10.1016/B978-0-12-814515-9.00004-7
    [Google Scholar]
  7. Davison AJ. Overview of classification. In Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B et al. eds Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis Cambridge: Cambridge University Press; 2007 [PubMed]
    [Google Scholar]
  8. Nightingale K, Lin K-M, Ravenhill BJ, Davies C, Nobre L et al. High-definition analysis of host protein stability during human cytomegalovirus infection reveals antiviral factors and viral evasion mechanisms. Cell Host Microbe 2018; 24:447–460 [View Article] [PubMed]
    [Google Scholar]
  9. Weekes MP, Tomasec P, Huttlin EL, Fielding CA, Nusinow D et al. Quantitative temporal viromics: an approach to investigate host-pathogen interaction. Cell 2014; 157:1460–1472 [View Article] [PubMed]
    [Google Scholar]
  10. Noriega VM, Tortorella D. Human cytomegalovirus-encoded immune modulators partner to downregulate major histocompatibility complex class I molecules. J Virol 2009; 83:1359–1367 [View Article] [PubMed]
    [Google Scholar]
  11. van den Boomen DJH, Lehner PJ. Identifying the ERAD ubiquitin E3 ligases for viral and cellular targeting of MHC class I. Mol Immunol 2015; 68:106–111 [View Article] [PubMed]
    [Google Scholar]
  12. van den Boomen DJH, Timms RT, Grice GL, Stagg HR, Skødt K et al. TMEM129 is a Derlin-1 associated ERAD E3 ligase essential for virus-induced degradation of MHC-I. Proc Natl Acad Sci U S A 2014; 111:11425–11430 [View Article] [PubMed]
    [Google Scholar]
  13. Chevalier MS, Daniels GM, Johnson DC. Binding of human cytomegalovirus US2 to major histocompatibility complex class I and II proteins is not sufficient for their degradation. J Virol 2002; 76:8265–8275 [View Article] [PubMed]
    [Google Scholar]
  14. Kikkert M, Hassink G, Barel M, Hirsch C, van der Wal FJ et al. Ubiquitination is essential for human cytomegalovirus US11-mediated dislocation of MHC class I molecules from the endoplasmic reticulum to the cytosol. Biochem J 2001; 358:369–377 [View Article] [PubMed]
    [Google Scholar]
  15. Shamu CE, Flierman D, Ploegh HL, Rapoport TA, Chau V. Polyubiquitination is required for US11-dependent movement of MHC class I heavy chain from endoplasmic reticulum into cytosol. Mol Biol Cell 2001; 12:2546–2555 [View Article] [PubMed]
    [Google Scholar]
  16. Stagg HR, Thomas M, van den Boomen D, Wiertz EJHJ, Drabkin HA et al. The TRC8 E3 ligase ubiquitinates MHC class I molecules before dislocation from the ER. J Cell Biol 2009; 186:685–692 [View Article] [PubMed]
    [Google Scholar]
  17. Tortorella D, Story CM, Huppa JB, Wiertz EJ, Jones TR et al. Dislocation of type I membrane proteins from the ER to the cytosol is sensitive to changes in redox potential. J Cell Biol 1998; 142:365–376 [View Article] [PubMed]
    [Google Scholar]
  18. Wiertz EJHJ, Jones TR, Sun L, Bogyo M, Geuze HJ et al. The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 1996; 84:769–779 [View Article]
    [Google Scholar]
  19. Wiertz EJ, Tortorella D, Bogyo M, Yu J, Mothes W et al. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 1996; 384:432–438 [View Article] [PubMed]
    [Google Scholar]
  20. Lehner PJ, Karttunen JT, Wilkinson GWG, Cresswell P. The human cytomegalovirus US6 glycoprotein inhibits transporter associated with antigen processing-dependent peptide translocation. Proc Natl Acad Sci U S A 1997; 94:6904–6909 [View Article] [PubMed]
    [Google Scholar]
  21. Noriega VM, Hesse J, Gardner TJ, Besold K, Plachter B et al. Human cytomegalovirus US3 modulates destruction of MHC class I molecules. Mol Immunol 2012; 51:245–253 [View Article] [PubMed]
    [Google Scholar]
  22. Dunn C, Chalupny NJ, Sutherland CL, Dosch S, Sivakumar PV et al. Human cytomegalovirus glycoprotein UL16 causes intracellular sequestration of NKG2D ligands, protecting against natural killer cell cytotoxicity. J Exp Med 2003; 197:1427–1439 [View Article] [PubMed]
    [Google Scholar]
  23. Fielding CA, Aicheler R, Stanton RJ, Wang ECY, Han S et al. Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation. PLoS Pathog 2014; 10:e1004058 [View Article] [PubMed]
    [Google Scholar]
  24. Hsu J-L, van den Boomen DJH, Tomasec P, Weekes MP, Antrobus R et al. Plasma membrane profiling defines an expanded class of cell surface proteins selectively targeted for degradation by HCMV US2 in cooperation with UL141. PLoS Pathog 2015; 11:e1004811 [View Article] [PubMed]
    [Google Scholar]
  25. Prod’homme V, Sugrue DM, Stanton RJ, Nomoto A, Davies J et al. Human cytomegalovirus UL141 promotes efficient downregulation of the natural killer cell activating ligand CD112. J Gen Virol 2010; 91:2034–2039 [View Article] [PubMed]
    [Google Scholar]
  26. Hook LM, Grey F, Grabski R, Tirabassi R, Doyle T et al. Cytomegalovirus miRNAs target secretory pathway genes to facilitate formation of the virion assembly compartment and reduce cytokine secretion. Cell Host Microbe 2014; 15:363–373 [View Article] [PubMed]
    [Google Scholar]
  27. Soh TK, Davies CTR, Muenzner J, Hunter LM, Barrow HG et al. Temporal proteomic analysis of herpes simplex virus 1 infection reveals cell-surface remodeling via PUL56-mediated GOPC degradation. Cell Rep 2020; 33:108235 [View Article] [PubMed]
    [Google Scholar]
  28. McSharry BP, Jones CJ, Skinner JW, Kipling D, Wilkinson GWG. Human telomerase reverse transcriptase-immortalized MRC-5 and HCA2 human fibroblasts are fully permissive for human cytomegalovirus. J Gen Virol 2001; 82:855–863 [View Article] [PubMed]
    [Google Scholar]
  29. Dargan DJ, Douglas E, Cunningham C, Jamieson F, Stanton RJ et al. Sequential mutations associated with adaptation of human cytomegalovirus to growth in cell culture. J Gen Virol 2010; 91:1535–1546 [View Article] [PubMed]
    [Google Scholar]
  30. Stanton RJ, Baluchova K, Dargan DJ, Cunningham C, Sheehy O et al. Reconstruction of the complete human cytomegalovirus genome in a BAC reveals RL13 to be a potent inhibitor of replication. J Clin Invest 2010; 120:3191–3208 [View Article] [PubMed]
    [Google Scholar]
  31. Stanton RJ, McSharry BP, Armstrong M, Tomasec P, Wilkinson GWG. Re-engineering adenovirus vector systems to enable high-throughput analyses of gene function. Biotechniques 2008; 45:659–662 [View Article] [PubMed]
    [Google Scholar]
  32. Tanaka J, Ogura T, Kamiya S, Sato H, Yoshie T et al. Enhanced replication of human cytomegalovirus in human fibroblasts treated with dexamethasone. J Gen Virol 1984; 65:1759–1767 [View Article] [PubMed]
    [Google Scholar]
  33. Tanaka J, Ogura T, Kamiya S, Yoshie T, Yabuki Y et al. Dexamethasone enhances human cytomegalovirus replication in human epithelial cell cultures. Virology 1984; 136:448–452 [View Article] [PubMed]
    [Google Scholar]
  34. Nobre LV, Nightingale K, Ravenhill BJ, Antrobus R, Soday L et al. Human cytomegalovirus interactome analysis identifies degradation hubs, domain associations and viral protein functions. Elife 2019; 8:e49894 [View Article] [PubMed]
    [Google Scholar]
  35. Sato K, Nakano A. Mechanisms of COPII vesicle formation and protein sorting. FEBS Lett 2007; 581:2076–2082 [View Article] [PubMed]
    [Google Scholar]
  36. Fletcher-Etherington A, Nobre L, Nightingale K, Antrobus R, Nichols J et al. Human cytomegalovirus protein PUL36: a dual cell death pathway inhibitor. Proc Natl Acad Sci U S A 2020; 117:18771–18779 [View Article] [PubMed]
    [Google Scholar]
  37. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001; 25:402–408 [View Article] [PubMed]
    [Google Scholar]
  38. Weekes MP, Antrobus R, Talbot S, Hör S, Simecek N et al. Proteomic plasma membrane profiling reveals an essential role for gp96 in the cell surface expression of LDLR family members, including the LDL receptor and LRP6. J Proteome Res 2012; 11:1475–1484 [View Article] [PubMed]
    [Google Scholar]
  39. McAlister GC, Nusinow DP, Jedrychowski MP, Wühr M, Huttlin EL et al. MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal Chem 2014; 86:7150–7158 [View Article] [PubMed]
    [Google Scholar]
  40. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc: Ser B 1995; 57:289–300 [View Article]
    [Google Scholar]
  41. Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 2008; 26:1367–1372 [View Article] [PubMed]
    [Google Scholar]
  42. Perez-Riverol Y, Bai J, Bandla C, García-Seisdedos D, Hewapathirana S et al. The PRIDE database resources in 2022: A hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res 2022; 50:D543–D552 [View Article] [PubMed]
    [Google Scholar]
  43. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H et al. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 2000; 25:25–29 [View Article]
    [Google Scholar]
  44. Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B et al. AmiGO: online access to ontology and annotation data. Bioinformatics 2009; 25:288–289 [View Article] [PubMed]
    [Google Scholar]
  45. Aleksander SA, Balhoff J, Carbon S, Cherry JM, Drabkin HJ et al. The gene ontology knowledgebase in 2023. Genetics 2023; 224:iyad031 [View Article] [PubMed]
    [Google Scholar]
  46. Manolea F, Claude A, Chun J, Rosas J, Melançon P. Distinct functions for Arf guanine nucleotide exchange factors at the Golgi complex: GBF1 and BIGs are required for assembly and maintenance of the Golgi stack and trans-Golgi network, respectively. Mol Biol Cell 2008; 19:523–535 [View Article] [PubMed]
    [Google Scholar]
  47. Sheen VL, Ganesh VS, Topcu M, Sebire G, Bodell A et al. Mutations in ARFGEF2 implicate vesicle trafficking in neural progenitor proliferation and migration in the human cerebral cortex. Nat Genet 2004; 36:69–76 [View Article] [PubMed]
    [Google Scholar]
  48. Shinotsuka C, Waguri S, Wakasugi M, Uchiyama Y, Nakayama K. Dominant-negative mutant of BIG2, an ARF-guanine nucleotide exchange factor, specifically affects membrane trafficking from the trans-Golgi network through inhibiting membrane association of AP-1 and GGA coat proteins. Biochem Biophys Res Commun 2002; 294:254–260 [View Article] [PubMed]
    [Google Scholar]
  49. Chiu S-L, Diering GH, Ye B, Takamiya K, Chen C-M et al. GRASP1 regulates synaptic plasticity and learning through endosomal recycling of AMPA receptors. Neuron 2017; 93:1405–1419 [View Article] [PubMed]
    [Google Scholar]
  50. Kasberg W, Luong P, Hanna MG, Minushkin K, Tsao A et al. The Sar1 GTPase is dispensable for COPII-dependent cargo export from the ER. Cell Rep 2023; 42:112635 [View Article] [PubMed]
    [Google Scholar]
  51. Melville DB, Studer S, Schekman R. Small sequence variations between two mammalian paralogs of the small GTPase SAR1 underlie functional differences in coat protein complex II assembly. J Biol Chem 2020; 295:8401–8412 [View Article] [PubMed]
    [Google Scholar]
  52. Kamiya Y, Kamiya D, Yamamoto K, Nyfeler B, Hauri H-P et al. Molecular basis of sugar recognition by the human L-type lectins ERGIC-53, VIPL, and VIP36. J Biol Chem 2008; 283:1857–1861 [View Article] [PubMed]
    [Google Scholar]
  53. Neve EPA, Svensson K, Fuxe J, Pettersson RF. VIPL, a VIP36-like membrane protein with a putative function in the export of glycoproteins from the endoplasmic reticulum. Exp Cell Res 2003; 288:70–83 [View Article] [PubMed]
    [Google Scholar]
  54. Nufer O, Mitrovic S, Hauri H-P. Profile-based data base scanning for animal L-type lectins and characterization of VIPL, a novel VIP36-like endoplasmic reticulum protein. J Biol Chem 2003; 278:15886–15896 [View Article] [PubMed]
    [Google Scholar]
  55. Qin S-Y, Kawasaki N, Hu D, Tozawa H, Matsumoto N et al. Subcellular localization of ERGIC-53 under endoplasmic reticulum stress condition. Glycobiology 2012; 22:1709–1720 [View Article] [PubMed]
    [Google Scholar]
  56. Appenzeller-Herzog C, Nyfeler B, Burkhard P, Santamaria I, Lopez-Otin C et al. Carbohydrate- and conformation-dependent cargo capture for ER-exit. Mol Biol Cell 2005; 16:1258–1267 [View Article] [PubMed]
    [Google Scholar]
  57. Lederkremer GZ, Glickman MH. A window of opportunity: timing protein degradation by trimming of sugars and ubiquitins. Trends Biochem Sci 2005; 30:297–303 [View Article] [PubMed]
    [Google Scholar]
  58. Yamaguchi D, Kawasaki N, Matsuo I, Totani K, Tozawa H et al. VIPL has sugar-binding activity specific for high-mannose-type N-glycans, and glucosylation of the alpha1,2 mannotriosyl branch blocks its binding. Glycobiology 2007; 17:1061–1069 [View Article] [PubMed]
    [Google Scholar]
  59. Gewurz BE, Gaudet R, Tortorella D, Wang EW, Ploegh HL et al. Antigen presentation subverted: structure of the human cytomegalovirus protein US2 bound to the class I molecule HLA-A2. Proc Natl Acad Sci U S A 2001; 98:6794–6799 [View Article] [PubMed]
    [Google Scholar]
  60. Gewurz BE, Wang EW, Tortorella D, Schust DJ, Ploegh HL. Human cytomegalovirus US2 endoplasmic reticulum-lumenal domain dictates association with major histocompatibility complex class I in a locus-specific manner. J Virol 2001; 75:5197–5204 [View Article] [PubMed]
    [Google Scholar]
  61. Furman MH, Ploegh HL, Tortorella D. Membrane-specific, host-derived factors are required for US2- and US11-mediated degradation of major histocompatibility complex class I molecules. J Biol Chem 2002; 277:3258–3267 [View Article] [PubMed]
    [Google Scholar]
  62. Kamiya Y, Yamaguchi Y, Takahashi N, Arata Y, Kasai K-I et al. Sugar-binding properties of VIP36, an intracellular animal lectin operating as a cargo receptor. J Biol Chem 2005; 280:37178–37182 [View Article] [PubMed]
    [Google Scholar]
  63. Satoh T, Cowieson NP, Hakamata W, Ideo H, Fukushima K et al. Structural basis for recognition of high mannose type glycoproteins by mammalian transport lectin VIP36. J Biol Chem 2007; 282:28246–28255 [View Article] [PubMed]
    [Google Scholar]
  64. Gomez-Navarro N, Miller E. Protein sorting at the ER-Golgi interface. J Cell Biol 2016; 215:769–778 [View Article] [PubMed]
    [Google Scholar]
  65. Pagant S, Wu A, Edwards S, Diehl F, Miller EA. Sec24 is a coincidence detector that simultaneously binds two signals to drive ER export. Curr Biol 2015; 25:403–412 [View Article] [PubMed]
    [Google Scholar]
  66. Le-Trilling VTK, Trilling M. Ub to no good: how cytomegaloviruses exploit the ubiquitin proteasome system. Virus Res 2020; 281:197938 [View Article] [PubMed]
    [Google Scholar]
  67. Oresic K, Ng CL, Tortorella D. TRAM1 participates in human cytomegalovirus US2- and US11-mediated dislocation of an endoplasmic reticulum membrane glycoprotein. J Biol Chem 2009; 284:5905–5914 [View Article] [PubMed]
    [Google Scholar]
  68. Soetandyo N, Ye Y. The P97 ATPase dislocates MHC class I heavy chain in US2-expressing cells via a Ufd1-Npl4-independent mechanism. J Biol Chem 2010; 285:32352–32359 [View Article] [PubMed]
    [Google Scholar]
  69. Hebert DN, Foellmer B, Helenius A. Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell 1995; 81:425–433 [View Article] [PubMed]
    [Google Scholar]
  70. Sousa M, Parodi AJ. The molecular basis for the recognition of misfolded glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase. EMBO J 1995; 14:4196–4203 [View Article] [PubMed]
    [Google Scholar]
  71. Avezov E, Frenkel Z, Ehrlich M, Herscovics A, Lederkremer GZ. Endoplasmic reticulum (ER) mannosidase I is compartmentalized and required for N-glycan trimming to Man5-6GlcNAc2 in glycoprotein ER-associated degradation. Mol Biol Cell 2008; 19:216–225 [View Article] [PubMed]
    [Google Scholar]
  72. Groisman B, Shenkman M, Ron E, Lederkremer GZ. Mannose trimming is required for delivery of a glycoprotein from EDEM1 to XTP3-B and to late endoplasmic reticulum-associated degradation steps. J Biol Chem 2011; 286:1292–1300 [View Article] [PubMed]
    [Google Scholar]
  73. Hosokawa N, Kamiya Y, Kamiya D, Kato K, Nagata K. Human OS-9, a lectin required for glycoprotein endoplasmic reticulum-associated degradation, recognizes mannose-trimmed N-glycans. J Biol Chem 2009; 284:17061–17068 [View Article] [PubMed]
    [Google Scholar]
  74. Jakob CA, Burda P, Roth J, Aebi M. Degradation of misfolded endoplasmic reticulum glycoproteins in Saccharomyces cerevisiae is determined by a specific oligosaccharide structure. J Cell Biol 1998; 142:1223–1233 [View Article] [PubMed]
    [Google Scholar]
  75. Shenkman M, Ron E, Yehuda R, Benyair R, Khalaila I et al. Mannosidase activity of EDEM1 and EDEM2 depends on an unfolded state of their glycoprotein substrates. Commun Biol 20181–11 [View Article] [PubMed]
    [Google Scholar]
  76. Tomasec P, Wang ECY, Davison AJ, Vojtesek B, Armstrong M et al. Downregulation of natural killer cell-activating ligand CD155 by human cytomegalovirus UL141. Nat Immunol 2005; 6:181–188 [View Article] [PubMed]
    [Google Scholar]
  77. Niessen CM, Hogervorst F, Jaspars LH, de Melker AA, Delwel GO et al. The alpha 6 beta 4 integrin is a receptor for both laminin and kalinin. Exp Cell Res 1994; 211:360–367 [View Article] [PubMed]
    [Google Scholar]
  78. Schaff M, Tang C, Maurer E, Bourdon C, Receveur N et al. Integrin α6β1 is the main receptor for vascular laminins and plays a role in platelet adhesion, activation, and arterial thrombosis. Circulation 2013; 128:541–552 [View Article] [PubMed]
    [Google Scholar]
  79. Staquet MJ, Levarlet B, Dezutter-Dambuyant C, Schmitt D. Human epidermal langerhans cells express beta 1 integrins that mediate their adhesion to laminin and fibronectin. J Invest Dermatol 1992; 99:12S–14S [View Article] [PubMed]
    [Google Scholar]
  80. Feire AL, Koss H, Compton T. Cellular integrins function as entry receptors for human cytomegalovirus via a highly conserved disintegrin-like domain. Proc Natl Acad Sci U S A 2004; 101:15470–15475 [View Article] [PubMed]
    [Google Scholar]
  81. Komurasaki T, Toyoda H, Uchida D, Morimoto S. Epiregulin binds to epidermal growth factor receptor and ErbB-4 and induces tyrosine phosphorylation of epidermal growth factor receptor, ErbB-2, ErbB-3 and ErbB-4. Oncogene 1997; 15:2841–2848 [View Article] [PubMed]
    [Google Scholar]
  82. Sahin U, Weskamp G, Kelly K, Zhou H-M, Higashiyama S et al. Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J Cell Biol 2004; 164:769–779 [View Article] [PubMed]
    [Google Scholar]
  83. Shirakata Y, Komurasaki T, Toyoda H, Hanakawa Y, Yamasaki K et al. Epiregulin, a novel member of the epidermal growth factor family, is an autocrine growth factor in normal human keratinocytes. J Biol Chem 2000; 275:5748–5753 [View Article] [PubMed]
    [Google Scholar]
  84. Cassoni P, Marrocco T, Bussolati B, Allia E, Munaron L et al. Oxytocin induces proliferation and migration in immortalized human dermal microvascular endothelial cells and human breast tumor-derived endothelial cells. Mol Cancer Res 2006; 4:351–359 [View Article] [PubMed]
    [Google Scholar]
  85. Li D, San M, Zhang J, Yang A, Xie W et al. Oxytocin receptor induces mammary tumorigenesis through prolactin/p-STAT5 pathway. Cell Death Dis 2021; 12:588 [View Article] [PubMed]
    [Google Scholar]
  86. Hang Q, Isaji T, Hou S, Im S, Fukuda T et al. Integrin α5 suppresses the phosphorylation of epidermal growth factor receptor and its cellular signaling of cell proliferation via N-glycosylation. J Biol Chem 2015; 290:29345–29360 [View Article] [PubMed]
    [Google Scholar]
  87. Moro L, Venturino M, Bozzo C, Silengo L, Altruda F et al. Integrins induce activation of EGF receptor: role in MAP kinase induction and adhesion-dependent cell survival. EMBO J 1998; 17:6622–6632 [View Article] [PubMed]
    [Google Scholar]
  88. Moro L, Dolce L, Cabodi S, Bergatto E, Boeri Erba E et al. Integrin-induced epidermal growth factor (EGF) receptor activation requires c-Src and p130Cas and leads to phosphorylation of specific EGF receptor tyrosines. J Biol Chem 2002; 277:9405–9414 [View Article] [PubMed]
    [Google Scholar]
  89. Ricono JM, Huang M, Barnes LA, Lau SK, Weis SM et al. Specific cross-talk between epidermal growth factor receptor and integrin alphavbeta5 promotes carcinoma cell invasion and metastasis. Cancer Res 2009; 69:1383–1391 [View Article] [PubMed]
    [Google Scholar]
  90. Carpenter BL, Chen M, Knifley T, Davis KA, Harrison SMW. Integrin α6β4 promotes autocrine Epidermal Growth Factor Receptor (EGFR) signaling to stimulate migration and invasion toward Hepatocyte Growth Factor (HGF). J Biol Chem 2015; 290:27228–27238 [View Article] [PubMed]
    [Google Scholar]
  91. Nyfeler B, Reiterer V, Wendeler MW, Stefan E, Zhang B et al. Identification of ERGIC-53 as an intracellular transport receptor of alpha1-antitrypsin. J Cell Biol 2008; 180:705–712 [View Article] [PubMed]
    [Google Scholar]
  92. Zhang B, Kaufman RJ, Ginsburg D. LMAN1 and MCFD2 form a cargo receptor complex and interact with coagulation factor VIII in the early secretory pathway. J Biol Chem 2005; 280:25881–25886 [View Article] [PubMed]
    [Google Scholar]
  93. Zhang B, Zheng C, Zhu M, Tao J, Vasievich MP et al. Mice deficient in LMAN1 exhibit FV and FVIII deficiencies and liver accumulation of α1-antitrypsin. Blood 2011; 118:3384–3391 [View Article] [PubMed]
    [Google Scholar]
  94. Hansen SG, Powers CJ, Richards R, Ventura AB, Ford JC et al. Evasion of CD8+ T cells is critical for superinfection by cytomegalovirus. Science 2010; 328:102–106 [View Article] [PubMed]
    [Google Scholar]
  95. Wang ECY, Pjechova M, Nightingale K, Vlahava V-M, Patel M et al. Suppression of costimulation by human cytomegalovirus promotes evasion of cellular immune defenses. Proc Natl Acad Sci U S A 2018; 115:4998–5003 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001980
Loading
/content/journal/jgv/10.1099/jgv.0.001980
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error